
Making Safety Beautiful:

Functional
Safety and Qt

WHITEPAPER

2Making Safety Beautiful: Functional Safety and Qt

The Qt Company

Contents
Introduction.. 3
What Is Functional Safety?.. 4
	 Functional Safety Standards and Vertical Markets.......... 5
	 Safety Integrity Levels.. 5
	 Functional Safety and Qt... 6
Enter the Qt Safe Renderer... 6
Functionally Safe Qt Architecture.. 7
	 Dual Processor Approach to Safety...................................... 8
	 Building a Safety-separated Qt System.............................. 8
Functionally Safe Qt in Different Domains............................. 9
	 Automotive.. 9
	 Medical.. 9
	 Industrial Automation...10
Tackling Functional Safety Challenges...................................10
Summary...11

3Making Safety Beautiful: Functional Safety and Qt

The Qt Company

Introduction
Functional safety requirements are increasingly relevant
in a number of disparate markets – after all, who doesn’t
want safer highways, hospitals, and factories? Consist-
ent processes and standards can help us design and
build products that make the systems upon which these
institutions operate safer. But the conservative approach
of functional safety is often at odds with many aspects
of the standard software development process – modern
tools that make development easier, dynamic frame-
works that allow software to adapt, and product require-
ments that call for attractive, modern, and updatable UIs
rely on practices often forbidden in a functional safety
context.

At the Qt Company, we increasingly see the intersection
of these two disciplines. End-customers demand hard-
ened products be as capable, flexible, and user-friendly
as their smartphones. Meanwhile, industry regulators
and corporate safety officers demand products be as safe
as possible and meet standards that are difficult for most
UI frameworks to meet. Is it possible to build a product
that is at once functionally safe, modern, and attractive?

The answer is yes, although unsurprisingly it does take
more planning and work to achieve as well as some expe-
rience to avoid a number of pitfalls. In this white paper,
we’ll discuss how to go about incorporating a modern,
dynamic, and capable UX into a functionally safe product.
Although we’ll specifically be using Qt as our UX frame-
work in this whitepaper, we’ll also cover some generic
advice whenever possible.

4Making Safety Beautiful: Functional Safety and Qt

The Qt Company

What Is Functional Safety?

Let’s start with a brief introduction to functional safety.
Its basic goal is to avoid unacceptable harm to people
by lowering the impact of failures or by eliminating them
whenever possible. This can be broken down – with
apologies to safety experts everywhere for its simplicity
– into four essentials.

1) Avoiding faults.
The goal isn’t to remove all faults because that’s
impossible to achieve except for the most trivial soft-
ware. Rather, it’s about trying to avoid systematic
faults when possible and properly control them when
not. For example: because dynamic memory allocation
can fail, a functionally safe approach would statically
allocate all memory. In a functionally safe system you
would also try to avoid or control random faults or fail-
ures, which could mean introducing redundancy in both
software and hardware, or introducing keep-alive or
heartbeat mechanisms to ensure software is running
properly.

2) Managing risk.
Risk management starts with an understanding of
the risk level through a risk assessment – that is,
determining the worst that could happen if a compo-
nent fails. This is determined by quantifying the risk
in three ways: the severity of an injury (minor to death),
the frequency of occurrence (seldom to continuous),
and the ability to avoid (possible or unavoidable). If
the failure of a train-control mechanism could cause
a derailment at every junction, this would be considered
a severe, frequent, and unavoidable risk – and would
absolutely require extreme risk reduction to mitigate
failure. By comparison, faults that could cause a person
to get a small cut if they don’t move their hand fast
enough when changing a toner cartridge are minor,
infrequent, and avoidable. Understanding risk level is
critical to knowing how to manage risk; this is typically
detailed for different industries via terminologies like
Safety Integrity Level (SIL) or Class. More on this later.

3) Being consistent.
Early safety critical systems were created before func-
tional safety standards so it is clearly possible to create
safe systems without following a set of rules. However,
we as software engineers have learned from examining
the mistakes of others how we should and shouldn’t
build safe software. This has allowed experts to capture
best practices in various standards. Each industry has
their own way of defining processes to build safe soft-
ware but they’re all similar in that they enforce repeat-
able, consistent ways of doing things. You don’t create
safe software if you’re a cowboy coder.

4) Incorporating safety from inception
Software needs to be designed with safety in mind
from the beginning – it’s extremely difficult to build
a truly safe system by addressing safety as an after-
thought. Acknowledging safety requirements at the
architectural and design stage is important because
some system characteristics are vitally different when
some components need to be (nearly) fail-proof. If
you’re building a device that isn’t allowed to fail, your
approach to a graphics subsystem will be very differ-
ent than if infrequent, isolated failures can be tolerated
(and fixed by the occasional reboot).

5Making Safety Beautiful: Functional Safety and Qt

The Qt Company

Functional Safety Standards
and Vertical Markets

There is no shortage of acronyms and numbered stand-
ards in the safety world so wouldn’t it be nice if there
was one single standard that applied to every industry?
Although there are different standards in use – for exam-
ple, medical systems use IEC 62304 and automotive
systems use ISO 26262 – many are related to the grand-
daddy of safety standards, IEC 61508, used by industrial
automation.

IEC 62304 (for medical) specifies the software lifecycle
process when building medical devices. Although certifi-
cation to IEC 61508 is not required by the medical device
industry, since it contains a good deal of practical consid-
erations for building safety systems it can be very bene-
ficial to refer to IEC 61508 in conjunction with IEC 62304.

ISO 26262 (for automotive) is a functional safety specifi-
cation customized for passenger vehicles and is a deriva-
tive of IEC 61508. Adaptations have been made to com-
prehend the particulars of designing and building cars,
as well as the unique nature of a car’s lifecycle. Although
ISO 26262 covers cars, IEC 61508 is still often used for
commercial, off-road vehicles

Safety Integrity Levels

One key aspect of nearly all functional safety standards
is that they divide the failure risk into different discrete
safety levels, where each level demands different treat-
ment of the software in question. For example, IEC 61508

establishes levels based on whether or not the device is
in high demand (used more or less continuously) or low
demand (used at most once a year). For high-demand
operation, the safety levels are defined as follows:

•	Safety Integrity Level (SIL) 4 – between 10-9 and 		
10-8 failures per hour or one failure in 11,400 years 		
of operation

•	SIL 3 – between 10-8 and 10-7 failures per hour 	
or one failure in 1140 years

•	SIL 2 – between 10-7 and 10-6 failures per hour 	
or one failure in 114 years

•	SIL 1 – between 10-6 and 10-5 failures per hour 	
or one failure in 11 years

Similarly, while ISO 26262 originally comes from IEC
61508, the two specifications use different definitions for
various safety levels. The safety levels for ISO 26262 are
not as prescriptive as those in IEC 61508 but are goal-ori-
ented instead. They are based on three separate factors
– severity, exposure, and controllability – that combine to
form an Automotive Safety Integrity Level (ASIL). Because
they are defined differently, the ASIL levels of ISO 26262
and SIL levels of IEC 61508 do not have a one-to-one
mapping although they can be roughly correlated (see
table 1). In practice, this means that software libraries for
functional safety purposes cannot be directly leveraged
between the two standards. Attempting to address both
an industrial and automotive market would require both
certifications.

1) From Safety Integrity Level to Assured Reliability and Resilience Level
  for Compositional Safety Critical Systems, Eric Verhulst, Altreonic NV

IEC 61508
Industrial

Automation

ISO 26262
Automotive

Highest safety level SIL 4 –

SIL 3 ASIL D

SIL 2 ASIL B/C

Lowest safety level SIL 1 ASIL A

No safety requirement –
QM

(Quality
Management)

Table 1. Rough comparison of Safety Integrity Levels 1

IEC 61508

IEC 61800-5-2
Electrical
Devices

IEC 50156
Furnaces

IEC 62061
Machinery

IEC 61511
Process
Industry

EN 50128
Railway

Applications

IEC 61513
Nuclear
Sector

IEC 26262
Automotive

IEC 62304
Medical
Devices

Figure 1: IEC 61508 and related standards

6Making Safety Beautiful: Functional Safety and Qt

The Qt Company

Finally, functional safety was not one of the original
design criteria of Qt, which implies a significant amount
of work required to reassess, document, and rework the
entire framework to comply with functional safety criteria.

Enter the Qt Safe Renderer

Thankfully, there is very little need to run software
as complex as Qt for most functional safety systems
– there’s a much better approach. Ideally, a safety-
separated Qt system would be responsible only for the
functional safety portions of the UI, safely interact with
the main software that does not have safety critical
requirements, and be designed from the ground-up with
safety considerations in mind. To reduce the possibilities
for failure, it should preferably be as small and simple as
required – but no less. And it should leverage as much as
possible from the tools and frameworks that already exist
in the normal Qt world.

These are the basic design requirements behind the Qt
Safe Renderer, which was specifically created to address
creating Qt applications in functional safety systems.
Because it separates the safety critical portions from
the primary Qt system, it also minimizes the impact of
a functional safety certification on the mainline software
development.

Essentially, the Qt Safe Renderer is a component that
allows simple graphics to be displayed, such as indicators,
warnings, alerts or pointers. It is isolated from the main
Qt application in a separate container (for example, within
a hypervisor environment) and overlays its imagery on
top of the primary application via hardware layers or a
safety-certified software compositor. It has the necessary
certification evidence to feed into a functional safety cer-
tification. It monitors the execution of the main Qt appli-
cation to ensure it’s functioning properly and attempts
to restart it if not.

Because the Qt Safe Renderer is designed to have a fail-
proof and 100% verified code path, it necessarily restricts
the options in how it presents items to the user interface.
The Qt Safe Renderer provides the functionality that is
most commonly needed in safety systems: displaying and
repositioning static bitmaps. This handles situations with
trouble or diagnostic indicators very well – which is typi-
cally enough to provide the functional safety portions of
a medical, automotive, or industrial automation system.

Functional Safety and Qt

With the basics out of the way, it’s time to address how
functional safety works with Qt because Qt provides the
user interface for a great many embedded devices. To
determine if it’s possible to use Qt in a functionally safe
system, we at the Qt Company conducted two separate
studies with the certification authority VTT Expert Ser-
vices. concluded that it is feasible to certify the Qt frame-
work for functional safety by separating out the func-
tionally safe component of a product from the remainder
of the system. The functionally safe piece runs within an
isolated environment and is used for the code portions
that must be certified – including critical display graphics.
The non-safe part is used for everything else, including
the majority of the Qt-based user interface. Of course,
the non-safe portion may still be robust and resilient code
but because it isn’t necessary to be certified, the non-safe
code doesn’t need to conform to the same rigid rules as
the safe portion. However, the two pieces still need to
share enough system state to allow for this separation.

The studies indicated several reasons that extracting
and isolating the functionally safe portion of the system
is the most appropriate course of action:
•	Parts of the Qt system would be extremely difficult 		

to retrofit for a functionally safe environment. (Even Qt
core would need to be heavily modified to be certified.)
Removal of these components would leave a signifi-
cantly lighter and less valuable framework.

•	As Qt makes substantive use of modern C++ features,
with much of it of questionable suitability for a func-
tionally safe system, a large subset of code would be
adversely impacted.

•	Many changes would also be needed to reduce or
remove dynamic objects, pointers, and automatic type
conversions from Qt. These changes would fundamen-
tally alter the API, making a certified Qt framework look
significantly different than Qt today.

•	The API changes required would break any existing code
and libraries. New APIs would also need new documen-
tation, training courses, and materials so that engineers
could properly use the new APIs.

•	A separate source fork would make it nearly impossible
to keep a “certified Qt” in sync with the standard 	
Qt baseline. Coupled with the frequent feature additions
and rapid release cadence, this would mean a safety-	
based Qt framework would increasingly drift away 	
from the normal Qt, doubling the engineering efforts 	
to maintain it.

7Making Safety Beautiful: Functional Safety and Qt

The Qt Company

Functionally Safe Qt Architecture

Software architecture for a system that combines Qt
and Qt Safe Renderer breaks one CPU virtually in two.
Depending on the operating system used and the level 	
of functional safety certification that’s required, this may
be possible to do within the operating system itself. If it’s
not possible, the addition of a hypervisor can keep soft-

1. Certified Operating System – operating system (typ-
ically a real-time OS) that can be safety certified such
the QNX Neutrino RTOS Safe Kernel or the Green Hills
INTEGRITY RTOS. The role of the RTOS is to provide the
services needed to load and execute the Qt Safe Renderer
– primarily memory allocation for initial execution, task
scheduling, and graphical-rendering services.
2. Qt Safe Renderer and Safe UI – component that han-
dles graphical rendering for the parts of the system that
fall under functional safety requirements. As the names
would indicate, the Safe UI is the application responsible
for the functionally safe UI, and the Qt Safe Renderer is
the engine that does the actual rendering on behalf of 	
the Safe UI. The Qt Safe Renderer also monitors the
health of the primary application and restarts it if it’s 	
not operating properly.
3. Operating System – OS that runs the main Qt appli-
cation. This OS doesn’t have to pass a functional safety
certification so it can be something with less rock-solid
safety credentials like Linux. However, there’s no reason
it couldn’t run the same OS as the safe operating system,
contributing fewer components and making the overall
system simpler. The primary OS needs to provide all the
standard services required by the primary app – memory
management, file systems, threading, synchronization
primitives, drivers, etc.
4. Qt – Qt framework libraries used by the main UI. These
are all the Qt components that the app requires at runtime.
5. Main UI – main application containing all the primary
non-safety functionality. The application provides a peri-

Main UI (Qt Quick)

RTOS (Safety Critical)

Electronics

Qt

Safe UI

Qt Safe Renderer

Figure 2. The Qt RTOS-only Environment for Functional Safety

Main UI (Qt Quick)

Electronics

Qt

Safe UI

Qt Safe Renderer

OS (e.g. Linux)

Type 1 Hypervisor (SC)

RTOS (SC)

Figure 3. The Qt Hypervisor Environment for Functional Safety

ware in each portion isolated from one another. In either
case, the goal is to certify the smaller portion for func-
tional safety while the remaining software can be built
using standard practices and existing methodologies.
Here are the two approaches:

odic heartbeat to the Qt Safe Render so it can monitor
the main UI application for crashes or misbehavior, and
respond appropriately. The application does not need 	
to pass certification, however, it’s still important that it 	
is highly reliable and as fail-proof as possible. You may
want to consider developing the application using the
same or similar processes as you use for the functionally
safe portion.

The architecture in figure 2 may work fine if you are using
a safety certified OS as a starting point. However, if your
system design uses Linux or another OS that can’t be
certified, you may need to add a type 1 hypervisor to the
system to ensure the split between the application OS
and the safety OS is isolated and more easily certified 	
– see figure 3. This may also be beneficial if you’re seek-
ing a higher level of functional safety certification (for
example, ASIL D). In this case, most of the pieces stay 	
the same as in figure 2 with one obvious addition:

6. Certified Type 1 Hypervisor – piece of software that
allows the safety and non-safety environments to run
on the same processor in isolated containers. The hyper-
visor also uses hardware support to let those two dispa-
rate environments share the same resources: CPU, GPU,
memory, flash, and peripherals. It provides the best
opportunity for developing a safety system that is defin-
itively isolated and protected, and hence easier to pass
certification.

8Making Safety Beautiful: Functional Safety and Qt

The Qt Company

Building a Safety-separated Qt System

With the introduction of a new safe partition into a Qt
run-time system, your main question may be, “How does
any of this work with my current Qt workflow?” Let’s
look at several pieces in a typical Qt tool chain and review
how they interface with the functionally safe part of the
system and Qt Safe Renderer.

• Qt Quick and Qt Quick Designer
Qt Quick (and QML) provides the overall system with
the ability to create declarative interfaces. Any indica-
tor assets created in Qt Quick Designer and used by the
QML interface can be extracted and built into the Qt Safe
Renderer binaries. This means the same tool chain and
workflows that build the primary user interface can also
be leveraged for the Qt Safe Renderer assets.
• Qt for Device Creation
The Qt Safe Renderer build-time tools integrate with
either standard Qt or Qt for Device Creation but because
embedded systems are the primary use case for func-
tional safety, Qt for Device Creation will almost always 	
be preferable. (Because the Qt Automotive Suite is bun-
dled with Qt for Device Creation, automotive designs will
also fall under this umbrella.)
• Qt 3D and Qt 3D Studio
If an application needs 3D rendering, you’d use Qt 3D
Studio to develop assets and Qt 3D to use them at run-
time. Just like QML, Qt Safe Renderer can interface with
the Qt 3D Studio tools at build time to import 2D assets,
which allows use of a single tool to service both the main
UI and the functionally safe compartment without requir-
ing duplicate resource creation.
• Entire Qt framework
Although Qt itself cannot be run in the functionally safe
environment, it does contribute to the overall system 	
by providing a reliable, stable, and proven UI-develop-
ment platform for the main application. The modules that
interact with the Qt Safe Renderer to control position and
visibility of indicator icons will be part of this application.

Figure 5. ISO icons added in Qt Quick Designer for use by Qt Safe Renderer

Dual Processor Approach to Safety

Another possible alternative to the hypervisor model 	
for a functionally safe architecture is to use independent
processors, as shown in Figure 4.

This approach has a number of benefits – one of the
biggest being near complete functional safety isolation
through hardware. As the safety critical portion of the
code is typically limited in scope, a lightweight micro-
controller running a simple no-frills RTOS may be able
to handle the processing needs while the full-featured
CPU and OS combination handles the remainder of
the system. The two CPUs may also be able to share
resources – RAM, non-volatile storage, or select peri-
pherals – as long as their interaction can guarantee
integrity of the safety critical software.

Figure 4. Functional Safety using two CPUs

Main UI (Qt Quick)

Electronics

Qt

Safe UI

CPU A CPU B

Qt Safe Renderer

OS (e.g. Linux) RTOS (SC)

9Making Safety Beautiful: Functional Safety and Qt

The Qt Company

Functionally Safe Qt in Different Domains

How would the proposed system decomposition fit in
different problem domains? Here are a few use cases 	
for three selected vertical markets that require functional
safety.

Automotive
The primary use case for functionally safe Qt in the car
is in digital instrument clusters. Knowing your engine’s
RPMs may not save your life but knowing that your brake
system failed just might. Note that the rest of the vehicle
contains many modules that may have safety require-
ments – anti-lock braking systems, steer-by-wire or
drive-by-wire, engine control units, etc. – but as these
components do not have GUIs, they would not need Qt.
The other place in the car for a screen is the infotainment
(or navigation) system. This does not typically have a
functional safety requirement but, when it does, devel-
opers can use the Qt Safe Renderer for safety critical
portions of the HMI.

Previous generations of car cockpits have used separate
LED indicators for things like engine, brake, or airbag fail-
ure. However, in many of today’s car designs, the entire
driver interface is being hoisted onto a single LCD or OLED
display. That means that to remain functionally safe,
these digital instrument clusters must ensure indica-
tors are controlled and contained independent from the
main instrument cluster application. Qt Safe Renderer is
perfectly designed for an automotive instrument cluster
– indicators are displayed by code in a completely isolated
container but can be repositioned by the main application
to allow for different instrumentation layouts.

Duplicating the driver’s traditional analog instrument
cluster with a screen has also given designers new free-
dom with fully configurable gauges, sophisticated 3D
rendered digital gauges, and 3D rotating vehicle models
to more attractively and more accurately communicate
with the driver. Even if designs are created within the Qt
3D Studio, 2D indicator assets can be used in conjunction
with the Qt Safe Renderer as required.

The main application would be responsible for not only
drawing the gauges (through Qt3D or QtQuick/QML)
but also interfacing with the vehicle bus interface (CAN/
MOST), steering wheel controls, and infotainment
system. It would normally be built with either Qt for
Device Creation or Qt for Automotive Suite (which is 	
actually a superset of Qt for Device Creation).

Medical
Medical devices with the lowest patient risk are called
Class I devices, although the specifics of the classifica-
tion vary somewhat based on country (see table below).
Examples would be gait analyzers, thermographic cam-
eras, or blood pressure monitors – devices where the
display can fail with no (or trivial) risk of harming a
patient.

Devices that are Class II (including the IIa/b European
variants) pose more risk to a patient – generally, if these
devices fail a patient may be either harmed or the failure
may allow for a life-threatening condition to go undiag-
nosed. Examples of these types of devices are electro-
cardiographs (ECGs), electroencephalographs (EEGs),
ultrasound machines, and stress exercise monitors. Like
the automotive use case, these devices have some critical
monitoring function that can be run in a safe container,
and use canned icons to alert the user to a danger state.
For example, an ultrasound machine may display the
black and white ultrasound image in the main application
while the safety portion flashes a large red exclamation
point when it encounters any abnormalities.

Class III devices pose the highest risk if they fail. They are
regulated strictly and require the highest level of certifi-
cation. Class III devices are often responsible for providing
life-support functions and if misused can present a risk
of serious injury or death. Examples of these are infusion
pumps, implantable nerve stimulators, implantable pace-
makers, or automated defibrillators. Even though im-
plantable devices clearly don’t need a screen, they may
be programmed with an external control pad running Qt,
making the entire system a class III device.

2) Medical device regulations, classification and submissions, MaRS Discovery District.

Europe
United
States Canada

Highest
safety level Class III Class III Class IV

Class IIb Class II / III Class III

Class IIa Class I / II Class II

Lowest
safety level Class IIa Class I Class I

Table 3. Rough comparison of regional medical safety classifications 2

10Making Safety Beautiful: Functional Safety and Qt

The Qt Company

The need for more modern, more responsive, and more
reliable user displays is most urgent for the nurses,
doctors, and technicians running the equipment. These
people need to make very quick decisions in life-or-death
situations – delivering a drug, shocking a heart, sustain-
ing breathing, or providing other life-critical functions
– and they need medical devices with straightforward,
intuitive, responsive, and reliable user interfaces. The
importance of error-free human-machine interfaces in
medical devices means that a great user interface isn’t
just cosmetic – it’s critical.

Industrial Automation

Perhaps the most dramatic differences between products
are within the industrial automation sector, which is often
a catch-all category for products that don’t clearly fit into
other domains. Industrial automation devices with func-
tional safety needs that also need LCD/OLED displays
range widely: laboratory automation, robotic manufactur-
ing, building automation, material inspection machines,
CNC machines, warehouse management systems, and
conveyor systems are a small sample.

Common to many of these systems is that a calibration
or other fault could lead to a critical error and dangerous
behavior if ignored. In this way, even these disparate
systems are similar to the automotive example
– a well-placed, prominent error indicator can ensure
that an operator takes appropriate action to shut down
the assembly line, turn off feed stocks, or whatever other
means are needed to prevent cascading failure and injury
should the device malfunction. Systems with the need
for critical error indication states can be handled with
the same type of system partitioning as discussed in the
other examples – running Qt Safe Renderer in an isolated
safety partition or virtual machine, while the remainder
of the UI that doesn’t require a safety certification
remains outside the safe partition.

Tackling Functional Safety Challenges

A functional safety-auditing firm will be your best source
of knowledge and guidance while you are undergoing
the certification process. However, you may have many
questions before entering into a functional safety project
– especially if this is your first. While we would always
recommend talking to the experts, here are a few
assorted items to consider as you determine your path.

•	Functionally safe products can end up saving money.
While there is a considerable effort in tools, education,
engineering, documentation, and process required to
develop a functionally safe product, at the end of it all
your company will have reassurance that it is building	
more reliable products. Functional safety provides a
measure of insurance against liability lawsuits and
publicly brand-damaging failures as well as simplifying
regulatory compliance, especially for multiple markets.
And by removing defects from your software early on, 	
it can make a very real contribution to cost savings.	
A comprehensive analysis of costs-per-defect (“A Short
History of the Cost Per Defect Metric”, Jones, 2012),
shows that creating excellent quality software can cost
33% less over the length of the program than average
quality software.

•	Software documentation is critical. Make sure you have
your documentation in order, because lack of sufficient
documentation is responsible for a surprising number
of certification failures. One study (“Analysis of Premar-
ket Review Times Under The 510(K) Program”, US FDA,
2011) found that 20% of certification submissions were
rejected due to lack of proper software documentation.
The importance of your documentation is always better
to understand before coding begins.

•	Functional safety can’t tell you how to design a good
user interface but a bad user interface will have a nega-
tive impact on your certification. Bad user interfaces can
cause user hesitation or control misuse, lead to misin-
terpretation of critical data, or make it possible to input
erroneous information. When designing your product
workflows, make sure you consider human factors
issues with a safety component in mind. Some indus-
tries have standard guidelines for user interface design
– for example, medical products can refer to ISO/IEC
62366:2007 and AAMI/ANSI HE75:2009 for usability
concerns.

•	Standards such as IEC 61508 don’t require certification
for individual components, which means that function-
ally safe products could use commercial-off-the-shelf
(COTS) software – even if it wasn’t certified. However,
functional safety standards do require proof of depend-
ability and suitability for COTS components, which is
significantly easier to accomplish when those products
have already been pre-certified. Certification for func-
tional safety software components requires creation
of specific specifications, documentation, reports, and
plans that feed into the certification process. Clearly 	
this cannot be accomplished without full support of 	
the vendor.

11Making Safety Beautiful: Functional Safety and Qt

The Qt Company

Summary
Making embedded systems both functionally safe and
user friendly is a modern global trend thanks to the grow-
ing demands of government agencies for safer products
and of end-users for the attractive and intuitive inter-
faces to which they’ve increasingly become accustomed.

Qt provides the user-friendly interface for a great many
embedded devices that must increasingly meet these
functional safety standards. Thankfully it is feasible to
certify the Qt framework by separating a system into
functionally safe and non-functionally safe components
– and to facilitate this process, we created the Qt Safe
Renderer to make it easier to create safety-critical user

interfaces. This functionally safe component not only
allows for separation of the safety critical portions from
the primary Qt system, it minimizes the impact of func-
tional safety certification on the mainline software devel-
opment while working within your current Qt workflow.

And if you need a Qt-savvy partner to help you through
your functional safety journey, we’re more than happy
to help.

The Qt Company develops and delivers the Qt development framework under commercial and open
source licenses. We enable the reuse of software code across all operating systems, platforms and
screen types, from desktops and embedded systems to wearables and mobile devices. Qt is used by
approximately one million developers worldwide and is the platform of choice for in-vehicle digital
cockpits, automation systems, medical devices, Digital TV/STB and other business critical applica-
tions in 70+ industries. With more than 250 employees worldwide, the company is headquartered in
Espoo, Finland and is listed on Nasdaq Helsinki Stock Exchange. To learn more visit http://qt.io

©
Al

l r
ig

ht
s r

es
er

ve
d

